
COP: Compiler Optimizations to Reduce Memory Stalls for Network
Pipelines Written in P4
Shailja Pandey, Ankit Bhardwaj, Anmol Panda, Sorav Bansal
Indian Institute of Technology Delhi, India

Motivation

1. Novel high-level domain-specific languages (DSLs) for
specifying modern packet processing pipeline function-
ality are deployed to separate the protocol-specification
from underlying switch implementation. These DSLs
rely on an optimizing compiler.

2. Manual optimization of such programs is undesirable
as it requires highly skilled programmers, and is error-
prone. This motivates us for the need to support opti-
mization during compilation.

3. Prior work has focused on architecture-independent opti-
mizations. We present a compiler that adds architecture-
specific optimizations and compiles a high-level P4 pro-
gram to a lower-level C-based implementation.

Figure 1: An abstract P4 forwarding model

Objectives

We aim to optimize the memory-intensive table look up
operation in the pipeline.
1. Reduce the number of lookup operations per packet by

selectively joining look-up tables.
2. Study the impact of hardware characteristics like I/O

device-memory interconnect, CPU-memory intercon-
nect, CPU processing speed, and memory hierarchy on
the performance of a given network processing program.

3. Reduce stall time per look-up operation by harnessing
memory level parallelism through instruction schedul-
ing and software prefetching.

Compiler Optimizations

We deploy a two-phased procedure, a configuration phase
and an optimization phase, to improve the application per-
formance.

Configuration Phase

1. In the configuration phase, the compiler measures the
hardware characteristics of the system by running stan-
dard micro-benchmarks.

2. The characteristics measured include: DMA latency, de-
gree of memory level parallelism, and L3 cache and
memory latency for the underlying setup.

Optimization Phase

The compiler deploys the optimizations in three passes.

Evaluation & Results

Control-flow of L2L3-ACL application

Figure 2: L2L3-ACL Control-flow[4]

Performance gain due to optimizations

Figure 3: Effect of Prefetching and Batching optimizations

Figure 4: Effect of TableCombine optimization on L2-L3ACL application

Conclusions

•Our results indicate that a compiler can generate
architecture-specific optimized code for P4 applications
when provided with information of available hardware
resources and application characteristics.

•Our Scheduling and prefetching optimizations provide
up to 280 percent gain for applications that were tested.

• For the L2L3-ACL application, the scheduling, prefetch-
ing and table-combine passes provide an overall gain of
up to 169 percent.

Forthcoming Research

We aim to extend this study∗:

•To measure the effect of architecture-dependent opti-
mizations on fairly complex networking applications that
involve multiple flow-diversions in their control-flow.

•To test the effectiveness of optimizations on different ma-
chine architectures.

• for applications which use stateful protocols.

References
[1] Intel Data Plane Development Kit. http://dpdk.org/.

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat,
George Varghese, and David Walker. P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun.
Rev., 44(3):87–95, July 2014.

[3] Sándor Laki, Dániel Horpácsi, Péter Vörös, Róbert Kitlei, Dániel
Leskó, and Máté Tejfel. High speed packet forwarding compiled
from protocol independent data plane specifications. In Proceed-
ings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,
pages 629–630, New York, NY, USA, 2016. ACM.

[4] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick
Feamster, Nick McKeown, and Jennifer Rexford. Pisces: A pro-
grammable, protocol-independent software switch. In Proceedings
of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, pages
525–538, New York, NY, USA, 2016. ACM.

Acknowledgements
Anmol Panda and Ankit Bhardwaj thank the Ministry of Human Re-
source Development (MHRD), Government of India for funding this
research study.

∗ Poster accepted at NSDI 2018: https://www.usenix.org/conference/nsdi18/poster-session


