
A survey of verification tools for GPU

software

THESIS

Submitted in partial fulfillment of the requirements of the course
BITS F421T

by

Anmol Panda

ID No. - 2012A7PS123G

Under the supervision of

Dr. Philipp Rümmer

Assistant Professor, Uppsala University

Dr. Neena Goveas

Associate Professor, BITS Pilani K K Birla Goa Campus

in the

Department of Computer Science and Information Systems

BITS Pilani K. K. Birla Goa Campus

2nd May, 2016

Declaration of Authorship

I, Anmol Panda, declare that this thesis titled, ‘A survey of verification tools for GPU

software’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for the first degree

thesis at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

An ounce of practice is worth tonnes of preaching

Mahatma Gandhi

Abstract

A survey of verification tools for GPU software

by

Anmol Panda

Graphics Processing Units (GPUs) have been identified as highly suitable for data-

intensive application in a wide range of domains such as image processing, super-

computing, quantum physics and bio-informatics among others. GPU programming

is the process of designing, writing and testing software that runs on GPUs. Due to

the pervasive usage of GPUs and GPU programming, GPU software verification tools

were developed to ensure their accuracy and reliability. In this thesis, we have consid-

ered two such tools: GPUVerify and GKLEE. Our objectives were to learn about the

common challenges developers face in GPU programming, to understand the specific

bugs that these two tools report and compare their scope and scalability aspects. We

have also considered their usability features like the time of execution and the nature of

their output and learn-ability issues like support and documentation. In order to test

the software, twenty-six benchmarks were selected from open-source applications. These

benchmarks were then verified using the tools and the results documented and analysed.

These results suggest that GPUVerify is a useful lightweight tool to detect data races

and barrier divergence. However, GKLEE subsumes GPUVerify by also reporting per-

formance issues like bank conflicts, warp divergence and non-coalesced memory accesses.

It therefore provides a holistic analysis of the accuracy and performance of a kernel. In

contrast, he report concludes that GPUVerify is more portable and user-friendly than

GKLEE and its output is easier to interpret. It should be used to test individual kernels

in the initial stages of application development. On the other hand, GKLEE has a more

detailed output and has greater system dependency than GPUVerify. It is best suited

for testing whole applications than separate kernels. Lastly, we outline potential goals

for future research.

Acknowledgements

I would like to begin by expressing my sincere gratitude to Dr. Philipp Rümmer, Assis-

tant Professor, Department of Information Technology, Uppsala University for agreeing

to mentor this project. His continued guidance has helped conceptualise the project’s

aim, define it’s scope and work towards the expected outcomes of this thesis. The

weekly online meetings have driven the research in the desired direction while ensuring

the project meets its weekly deadlines.

I would like to extend my heartfelt gratitude to Dr. Neena Goveas, Associate Professor,

Department of Computer Science and Information Systems, BITS Pilani K. K. Birla Goa

Campus for agreeing to be the on-campus supervisor for this thesis. Given the unique

set-up of the project, with the researcher in the campus and the mentor in Uppsala

university, Dr. Goveas has been instrumental in getting the project streamlined to

the university’s requirements. It would not have been possible to undertake this work

without her consent to be the supervisor.

I would also like to thank Dr. Bharat Deshpande, Head of Department, Department of

CS and IS, BITS Pilani K. K. Birla Goa Campus for his guidance during the project.

He has been helpful in providing necessary resources such as the computer system in lab

A-200 for conducting vital experiments and and in granting permissions for the same.

I am also thankful to Dr. A. Baskar for agreeing to be the examiner for my thesis and

giving me the opportunity to present my research on the eve of department day.

I am grateful to the Computer Center Lab management for providing the necessary

technical infrastructure for the weekly Skype meetings with Dr. Rummer. Without

their help and support, this communication would have been very difficult. Lastly, I

am thankful to Mr. Anuj Khandelwal, my batchmate and friend for lending his laptop

computer for these meetings.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures vii

List of Tables viii

Listings ix

1 Introduction 1

1.1 Scope and Objectives . 2

1.2 Related works . 3

2 Background 4

2.1 Emergence of Graphics Processing Unit 4

2.2 GPU Programming Platforms . 5

2.3 Verification of GPU software . 8

3 Challenges in GPU Computing 9

3.1 Differences in the programming model . 9

3.2 Differences in GPU and CPU architecture 10

3.3 Optimizing performance . 11

3.4 Degree of manual intervention . 11

3.5 Other aspects . 12

3.6 Common bugs in GPU kernels . 13

3.6.1 Data Race . 13

3.6.2 Barrier Divergence . 14

v

Contents vi

4 Experiments and Testing 16

4.1 Choice of Benchmarks . 16

4.2 Selected Benchmark Kernels . 17

4.3 Experimental Setup . 18

4.3.1 GPUVerify Prerequisites . 19

4.3.2 GKLEE prerequisites . 19

4.4 Prover of User GPUs . 20

4.5 Analysing kernels using GPUVerify and GKLEE 20

4.5.1 GPUVerify . 20

4.5.2 GKLEE . 21

5 Results and analysis 23

5.1 Verification using GPUVerify . 23

5.2 Verification using GKLEE . 25

5.3 Comparative analysis of GPUVerify and GKLEE 27

5.3.1 Difference in bugs reported . 27

5.3.2 Analysis of execution time . 28

6 Conclusion 31

6.1 Future work . 33

A Kernel Source code 34

A.1 Loop4.cl . 34

A.2 N Body Computation.cu . 35

A.3 Loop4a . 36

A.4 Inter Block Race.cu . 37

A.5 Data Race example in CUDA . 37

A.6 Cube.cu . 38

A.7 Deadlock0.cu . 39

Bibliography 40

List of Figures

4.1 Sample run of GPUVerify on kernel 3.2 21

4.2 Excerpt from a sample run of GKLEE on kernel A.4 22

5.1 GKLEE output for kernel A.5. Only the first data race is reported and
execution terminates. 26

vii

List of Tables

2.1 Comparison between CPU and GPU . 5

3.1 Bugs and issues reported by GPUVerify and GKLEE 15

4.1 Benchmarks selected for testing . 17

4.2 System Specifications . 18

4.3 Prerequisites for GPUVerify on system 4.2 19

4.4 Prerequisites of GKLEE on system 4.2 . 19

5.1 Results: OpenCL benchmarks verified using GPUVerify 24

5.2 Results: CUDA benchmarks verified using GPUVerify 24

5.3 Results: Benchmarks verified using GKLEE 25

5.4 Comparative analysis of data races reported by GPUVerify and GKLEE . 27

viii

Listings

2.1 Sequential Vector Addition on CPU . 5

2.2 Cuda Host code . 6

2.3 Cuda Kernel code . 6

3.1 Data Race example . 13

3.2 OpenCL example of Barrier Divergence and Data Race 14

A.1 Kernel - Loop4.cl . 34

A.2 Kernel - N Body Computation.cu . 35

A.3 Kernel - Loop4a.cl GPUVerify terminates with error for this benchmark . 36

A.4 Kernel - Inter block data.cu race . 37

A.5 Kernel - CUDA example with two data races 37

A.6 Kernel - Cube.cu . 38

A.7 Kernel - Deadlock0.cu . 39

ix

Dedicated to my
Mamma

x

Chapter 1

Introduction

Given the rapid developments in multi-core processor technology, the use of general

purpose GPUs has increased exponentially in the past decade. GPUs now play a vital

role in various types of applications that rely on these chips for parallel computation.

GPU computing platforms such as OpenCL, CUDA and OpenAMP have made a dis-

ruptive impact on the way data-intensive software are conceptualised and implemented.

However, this dependence on GPUs raises important questions regarding accuracy and

verifiability of such software. GPU kernels are prone to bugs such as data races that

go undetected during manual debugging. Errors such as incorrectly placed barriers and

inefficient memory accesses are difficult to find for humans.

Such errors, if left unchecked, can render the system in an undefined and unpredictable

state [1], [2], [3]. In order to recover from such a state, a system reboot may be required.

Since GPUs are now used in critical applications such as defence systems, aerospace

systems and medical equipment, the possibility of a system crash cannot be tolerated.

Consequently, tools such as GPUVerify, GKLEE and PUG have been developed. These

tools vary in their target applications, the scope of errors they detect in those applica-

tions and the approach they take to find and report them. They also vary in the depth of

their testing. GPUVerify conducts a static analysis of CUDA and OpenCl GPU kernels

and can report potential bugs, namely data races and barrier divergence. On the other

hand, GKLEE operates only on CUDA kernels and reports not only the aforementioned

bugs, but also analyses thread divergence within a warp, inefficient memory accesses

and bank conflicts.

1

Chapter One: Introduction 2

In this thesis, we have assessed the common errors that can occur in GPU software. We

used these tools to test carefully selected OpenCL and CUDA benchmark kernels. The

results of these tests have enabled us to comparatively analyse these tools not just for

the accuracy of their claims, but also their robustness, versatility and usability aspects.

1.1 Scope and Objectives

The objectives of the thesis were to analyse these software for their similarities and

differences as well as benefits and disadvantages of using each. We have compared the

tools for the factors mentioned below and provide an overview of the advantages and

drawbacks of each. We have also discussed major challenges facing GPU programming,

with specific interest in bugs such as data races and barrier divergence.

The scope of the project was limited to the usage and benefits of deploying the said

tools. We did not explore the mathematical and logical models of these tools. Similarly,

the design and architecture of the software was also excluded from the analysis. We

narrowed our focus to the types of bugs and performance issues, if any, that the tools

report. Moreover, we also looked at factors such as system requirements, run-times and

ease with which results can be interpreted by developers. Lastly, we considered the

usability and learn-ability aspects of the tools as well.

In the subsequent chapter, we have described the various stages of this project. Firstly,

chapter two explains the motivation and background of our research. Chapter three

outlines the broad challenges in GPU computing paradigm. Chapter four documents

the experimental setup and process while chapter five lists the results and analysis of

those experiments. Finally, chapter six explains the conclusions of our research and the

potential for future work in this area.

Chapter One: Introduction 3

1.2 Related works

The development of massively parallel GPUs has enabled their usage in domains from

personal computing, graphics applications, aerospace systems, medical imaging, etc.

This has motivated researchers to address the need for verifying GPU software written for

such myriad sectors. Betts et al [2] describe GPUverify, the background behind its need

and development, the mathematical model used for verification and the performance of

the tool. They also list certain drawbacks and possible improvements. Ethel Bardsley

and Alastair Donaldson [4] explore the practical impact of design decisions, namely

coarse-grained thread synchronization within the same warp on one hand and atomic

operations on the other. Gudong Li and Ganesh Gopalakrishnan [3] describe the logical

model of GKLEE, its capacity to detect bugs and performance issues and its performance

during verification of select commercial SDKs. They also explain the architecture and

test-generation model of GKLEE. Wei-Fan Chiang et al [5] describe a new method to

detect bugs utilising both barriers and atomics. They present a new algorithm, test

it on select benchmarks and provide the results. Guodong Li, Gopalkrishnan et al [6]

describe the need for a GPU software verification tool and describe their model for a

preliminary automated symbolic verifier called Prover of User GPUs (PUG). They utilise

techniques like partial order reduction and loop abstraction in this tool. To the best of

our knowledge, no studies of these tools similar to this one have been conducted. The

papers mentioned above introduce, analyse and evaluate the said tools.

Chapter 2

Background

2.1 Emergence of Graphics Processing Unit

Until about 2003, rapid advances in performance of microprocessors was achieved through

continuous increases in clock frequency, memory bandwidth and complexity of control

logic. However, this process reached saturation due to limitations on energy consump-

tion and heat dissipation. [7] The industry responded to this by generally using the

available amount of transistors to realise parallel architectures, both on CPUs and the

newly developed Graphics Processing Units (GPUs). This has enabled the earlier trend

of performance growth and cost reduction to continue.

A Graphics Processing Unit is a dedicated multi-thread processor with thousands of cores

that run multiple tasks in parallel. Its main purpose is to render images and motion

picture but it is increasingly used to tackle other compute-intensive parts of software.

By running the sequential code on the CPU and the compute-intensive portion on the

GPU, massive gains in performance can be achieved.

The following table lists the important difference between CPUs and GPUs[7]

Winning applications use a combination of CPUs and GPUs to capture the advantages

of both [7]. Domains that use GPU computing include financial analysis, scientific sim-

ulation, engineering simulation, data intensive analytics, medical imaging, digital audio

and video processing, computer vision, biomedical informatics and electronic design au-

tomation [7]. Many of these domains consist of critical systems such as aircraft control

and medical instruments that have a direct impact on safety. In such cases, the accuracy

and predictability of software assume greater importance.

In this context, much work has been done on CPU software verification over the past

few decades. Also, as CPU code is mostly sequential, error debugging and isolation is

4

Chapter Two: Background 5

Property CPU GPU

No. of Cores Tens Thousands

Core Type Latency Oriented Throughput Oriented

Local cache size Large Small

No. of registers Relatively few Relatively many

No. of SIMD units Relatively few Relatively many

Control logic Sophisticated Simple

Scheduling logic Relatively simple Relatively complicated

Table 2.1: Comparison between CPU and GPU

relatively easier. On the other hand, parallel programming using GPUs is a different

process altogether. This creates new challenges in not just writing code but also de-

bugging errors and verifying stated claims. Moreover, aspects such as scalability and

portability requirements only add to the complexity.

2.2 GPU Programming Platforms

There are three main programming platforms that are commonly used for GPU software

development [2]. These are OpenCL developed by the Khronos group [8], Compute

Unified Device Architecture (CUDA) developed by Nvidia [9] and C++ AMP from

Microsoft[10]. OpenCL is an open-source platform that is available freely and is AMD’s

main GPU programming model [2]. On the other hand, CUDA is a licensed platform

developed by Nvidia for its GPUs [9], [11].

Let us now consider the programming model used in CUDA. It is significantly different

from serial CPU programs and is illustrated here using the following example [7]. The

sequential CPU code written in C without any parallel components of CUDA is listed

in listing 2.1.

1 void veccAdd (f l o a t ∗h a , f l o a t ∗h b , f l o a t ∗h c , i n t n) {
2 i n t i ;

3 f o r (i =0; i<=n ; i++)

4 h c [i] = h a [i] + h b [i] ;

5 }

Listing 2.1: Sequential Vector Addition on CPU

This code executes only on the CPU and has no interaction whatsoever with the GPU.

On the other hand, the parallel CUDA program has two distinct components: Host code

and Device code.

Chapter Two: Background 6

The Host code is sequential and runs as before on the CPU (Host). It code initialises

the data items i.e. vectors A[] and B[] and calls the CUDA kernel. In the CUDA

platform, the Host calls a kernel function to run a multi-threaded section of the code on

the GPU (Device).

The kernel function accepts pointers to the data items as parameters. It also takes two

configuration parameters, namely number of blocks and threads per block. On the GPU,

each thread runs the same kernel code for a different data item. The kernel code stores

the sum in vector C[] and returns a pointer to C[] to the Host. The Host then accepts

the pointer and copies the data in C to its local data item. Listings 2.2 and 2.3 below

illustrate Host and Kernel code respectively.

1 #inc lude <s t d i o . h>

2 #inc lude <cuda . h>

3 void vecAdd (f l o a t ∗ h a , f l o a t ∗ h b , f l o a t ∗ h c , i n t n) {
4 i n t s i z e = n∗ s i z e o f ∗ f l o a t) ;

5 f l o a t ∗ d a , d b , d c ;

6 // a l l o c a t e memory f o r Vectors

7 cudaMalloc ((void ∗∗) &d a , s i z e) ;

8 cudaMemcpy(d a , h a , s i z e , cudaMemcpyHostToDevice) ;

9 cudaMalloc ((void ∗∗) &d b , s i z e) ;

10 cudaMemcpy(d b , h b , s i z e , cudaMemcpyHostToDevice) ;

11 // c a l l k e rne l f unc t i on with c o n f i g u r a t i o n parameters

12 vecAddKernel<<<c e i l (n /256 .0) , 256>>>(d a , d b , d c , n) ;

13 // copy vec to r C to host memory

14 cudaMemcpy(h c , d c , s i z e , cudaMemcpyDeviceToHost) ;

15 cudaFree (d a) ;

16 cudaFree (d b) ;

17 cudaFree (d c) ;

18 }

Listing 2.2: Cuda Host code

1 g l o b a l

2 void vecAddKernel (f l o a t ∗ A, f l o a t ∗ B, f l o a t ∗ C, i n t n) {
3 i n t i = thread idx . x + blockDim . x∗ blockIdx . x ;

4 i f (i < n)

5 C[i] = A[i] + B[i] ;

6 }

Listing 2.3: Cuda Kernel code

We can now consider the program in the examples above. As mentioned earlier, it

consists of two entities: Host and Device. The Host refers to the CPU and the Device

refers to the GPU. The application runs on the Host. Thus all sequential parts of the

Chapter Two: Background 7

code run on the Host as before. But the Host transfers control to the Device to run

the parallel sections of the code. This transfer of control is achieved through kernel

functions. They are similar to functions in C but also accept two configuration variables

as parameters, namely the number of blocks and threads per block respectively. These

variables determine the dimensions of the grid and blocks respectively. Apart from these,

the kernel accepts normal parameter variables like pointers to arrays of data items. Each

thread runs the same kernel code on a separate data item. Assuming that the number

of threads is more than the number of data items, all data items are processed in one

step.

Using the cudaMalloc() function, memory space can be reserved for data items. The

cudaMemcpy() function can transfer data between the Host and Device. In the example

above, the data array h a is copied into array d a which is then passed to the kernel

function as data. The variable size refers to the total memory in bytes used by each array.

The variables cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost are

predefined in cuda.h and indicate the direction of transfer i.e from CPU to GPU or

vice-versa, respectively.

The global implies that the following function can be called by the host but is

executed on the device. Thus, it is used before the kernel function vecAddKernel().

The parameters A, B and C are each a pointer to an array of data items. Vectors A and

B refer to the input arrays and vector C stores the resulting sum. Integer n stores the

number of data items. Inside the function, integer variable i stores the id of each thread,

calculated using system variables threadIdx.x, blockDim.x and blockIdx.x. The variable

threadIdx.x refers to the local id of a thread, within its block. The .x reference is used to

refer to the x co-ordinate of the id, as blocks may have one, two or three dimensions. In

the case of a 2 D block, both x and y co-ordinates must be used to refer to an individual

thread. Variable blockIdx.x refers to the x co-ordinate of the block id while blockDim.x

refers to the x dimensions of the grid of blocks. Similarly, blockDim.y will refer to the y

dimensions. These variables are defined in the header file cuda.h. The condition i < n

ensures that only those threads that have a legitimate data item to operate upon are

executed. This prevents any accesses to memory beyond the scope of the program. The

function dn/256.0e ensures that there are adequate number of threads in the device to

run all data items. The number 256 here refers to the number of threads per block.

Thus the grid on the device will have exactly dn/256.0e blocks. Each of these threads

runs one iteration of the kernel function on one unique data item. The array C is then

copied back to the Host using cudaMemcpy() function and stored in data array h c.

Lastly, the Host releases the memory used by local variables d a, d b and d c using the

cudaFree() function.

Chapter Two: Background 8

2.3 Verification of GPU software

One can observe the significant differences between sequential programming and parallel

CUDA programming. It is therefore essential that we take a closer look at what new

challenges emerge from this model. For example, to achieve maximum throughput, it is

essential to keep all fine grained CPU threads busy[6]. Moreover, it is necessary to ensure

coalesced data movement (combining several memory accesses together to reduce data

transfer overheads) between the global memory, used by the CPU and GPU, and the

shared memory accessed by the GPU threads [6]. Also, bank conflicts need to be reduced

and avoided as far as possible [6] to reduce data latency. The most common issues in

GPU kernel programming are data races and barrier divergence [2]. The emulator that

comes with standard GPUs does not cover all possible bugs and schedules, thus leaving

the possibility of bugs escaping their scrutiny. Such bugs can cause GPU hardware to

crash or deadlock [6]. More importantly, bugs such as data races occur only in specific

scenarios and can therefore remain latent in code for a long time. But on transferring to

a faster GPU, the same bugs can cause the program to stop working. It was therefore

considered essential to develop GPU kernel verification software to automatically detect

commonly found bugs in the code. Researchers have responded to this need over the

past decade and several tools are now available to verify whether a kernel is free of bugs.

We have selected three such tools in this thesis.

Firstly, GPUVerify [2] can be used to detect data races and barrier divergence in GPU

kernels written in CUDA and OpenCL. It uses automatic abstraction techniques to

generate conditions that are verified by automated theorem proving. It is used widely

for verifying GPU kernels. Secondly, GKLEE [3] can be used to verify GPU kernels

written in C++. It can detect bugs such as data races and barrier divergence. It can

also report non-coalesced memory accesses, memory bank conflicts and divergent warps

(warps are groups of threads within a block; these threads are executed in parallel) [2]

[3]. It is based on testing a program using concrete and symbolic (concolic) execution [3].

Thirdly, Prover of User GPU Programs (PUG) [6] is a kernel verification tool for kernels

written in CUDA C. It takes a kernel written in C as an input, analyzes it using SMT

tools and detects bugs such as data races, bank conflicts, incorrectly placed barriers,etc.

In this project, we have tested these software for the bugs they detect, run-times for

different kernels, hardware requirements and usability issues among others. In the first

phase of the project, benchmarks kernels were chosen from existing open-sourced li-

braries. In the second phase, these kernels were verified for bugs using the above men-

tioned software. We also wrote some simple CUDA kernels on our own to look for

specific cases of bugs. In the last phase, we have completed a comparative analysis of

these software.

Chapter 3

Challenges in GPU Computing

As we have seen in chapter 2, general purpose GPUs (GPGPUs) now play an ever in-

creasing role in data-intensive applications. However, several major challenges emerge in

designing and programming software that can fully harness the computing power of these

GPUs. In this chapter, we list the major issues and isolate the specific programming

bugs that we have considered in this project.

3.1 Differences in the programming model

Firstly, the GPU programming model is parallel in nature. It requires the user to un-

derstand parallel execution of programs and how to write code for the same. Since most

developers learn programming through sequential languages like C, Java, Python, etc.,

their skills are tuned to designing applications that work well on CPUs. Consequently,

it takes significant effort to learn parallel programming concepts and use them correctly

when developing software for GPGPUs. Moreover, it is not easy to convert any given

sequential program to a parallel version. Often, due to inefficient use of parallel APIs,

the parallel code running on a GPGPU may perform worse than the sequential program

running on a CPU [12] [13].

Secondly, the continuous rapid advances in GPU hardware technology have forced de-

velopers to change the programming platforms at regular intervals. Unlike CPUs, that

maintain API compatibility across several generations, APIs written for older generation

of GPUs may be sub-optimal and at times, even unusable on a new generation GPU [14].

At the same time, there are no definitive trends about the advances being made in GPU

hardware, thus leaving few possibilities for programmers to plan ahead. Consequently,

GPGPU programmers are faced with a dual problem: lack of backward compatibility for

9

Chapter Three: Challenges in GPU Computing 10

the existing code and inability to anticipate future changes [14]. This adds significant

uncertainty in developing applications for GPGPUs.

Thirdly, not all applications can be ported to a GPU. Several important problems do

not have massively parallel algorithms [15]. Given the degree of parallelism needed to

fully harness the potential of a GPGPU, many algorithms that are considered scalable

may fall short of this standard. Some problems such as finding the shortest path and

Delaunay triangulation do not have massively parallel algorithms that are work-efficient

i.e. we cannot make them parallel without making the code much more complex or

not at all. Also, applications that are highly parallelizable may not remain numerically

stable, like the Parallel Cyclic Reduction (PCR) algorithm [15].

3.2 Differences in GPU and CPU architecture

Firstly, programmers must adapt to the architectural changes between CPUs and GPUs.

For example, a CPU, with tens of cores, has sufficient cache memory available to speed

up data access. On the other hand, a GPU with thousands of cores has a shared on-

chip memory that is used as a cache. Here the programmer must rely on the scheduler

to appropriately use the on-chip memory and reduce data transfers from the global

memory [12]. Inefficient usage of the shared memory can lead to recurring transfers

to and from the larger global memory, thus adding another major overhead. Also,

memory accesses from different threads need to be properly coalesced so as to reduce

data transfer latency [16]. Another aspect of these architectural constraints is the degree

of multi-threading that the programmer must deploy in the application. Using very few

threads under-utilises the GPUs resources. The program must therefore use thousands of

threads to adequately exploit the GPUs data crunching power and prevent it from under-

performing. However, if too many threads are used, the cores may run out of registers,

thus forcing the GPU to simulate additional registers from its on-chip memory, further

increasing data latency.

Secondly, while GPU programming has emerged as a major implementation of parallel

computing, there are several other architectures available in the industry such as multi-

core CPUs and stream processors. [14]. For GPU computing to be accepted as the

default form of parallel computing it must establish application portability across all

of these major domains. While this may not appear to be absolutely necessary today,

developers can save significant time and resources if programs written for GPUs can run

efficiently on other architectures and vice-versa [14]. It will also enable GPUs to benefit

from advances in the future in other domains of parallel computing.

Chapter Three: Challenges in GPU Computing 11

3.3 Optimizing performance

Firstly, programming on GPUs imposes several constraints compared to serial code

written for CPUs. For, example CPUs have sophisticated control logic with branch

and loop prediction that optimize execution. Contrary to this, the GPU has very little

support for branching and looping which leads to inefficient execution. Also, the slowest

part of the process is to move the data in and out of the GPU [17]. Thus, it is essential

to profile GPGPU applications, quantify the overhead due to these copy operations and

determine if it acts as a performance bottleneck. Appropriate changes in the design of

the program must be made to remove or minimise such delays.

Secondly, optimizing performance for a GPU is a painstakingly difficult process, with

little theoretical basis. While CPUs benefit from advanced profilers and optimizing com-

pilers, such tools for GPU programs remain primitive. The few libraries that do exist

for optimizing performance are too numerous and can add complexity to the code [12],

making it less modular and difficult to debug. Using too many libraries can also add

several dependency constraints to the application, reducing its portability. Moreover,

there are few mechanisms available to provide feedback to the programmer about the

performance of the GPGPU. For instance, minor changes in the code like use of one API

function call instead of another can lead to drastic increase or decrease in performance,

referred to as a performance cliff [14]. It is important that the system provides appropri-

ate feedback to the user so as to set standards for efficient usage of the GPU resources

and avoid such random spikes or falls in performance. Tools such as GPUVerify and

GKLEE are a move in this direction.

3.4 Degree of manual intervention

In the current era, software that run on CPUs requires very little manual intervention

for error detection, isolation and avoidance. However, such tools for GPGPU software

remain scarce and limited in scope. Firstly, the CUDA framework imposes a great

deal of manual control over variable placement as data transfer across different levels

of the memory is not automated in the compiler [18]. Not only does this add to the

workload of the programmer, it significantly raises the possibility that inefficient memory

accesses remain uncorrected in the application. Consequently, many applications may

only achieve about half the decent performance expected from a CUDA application and

few would exceed 10 percent of their peak performance [18].

Secondly, while chip manufacturers claim that tremendous increases in performance

can be achieved by using the GPGPU for parallel applications, such improvements can

Chapter Three: Challenges in GPU Computing 12

only be achieved by the most motivated programmers willing to invest significant time,

effort and resources in the often redundant tasks of manually optimising the code [19].

Moreover, such investments can be made only by a few sectors of research like the defence

sector or the financial services industry, both of which tend to have a unique tolerance

for persistent, albeit expensive and tiring, efforts to achieve desired results [18]. On the

other hand, novice programmers like undergraduate students, young researchers and

small start-ups have neither the motivation nor the resources for similar endeavours.

this greatly reduces the degree of adoption of platforms such as OpenCL or CUDA [20]

[19].

3.5 Other aspects

Apart form the programming aspects of GPGPUs, there are several other issues that may

affect the programmers decision to switch to GPUs for parallel computations. Firstly,

not all applications require the degree of speedup that a GPU can deliver. In many cases,

other features in the architecture may act as bottlenecks, thus denting the performance

benefits achieved by the GPU. Secondly, developing applications for platforms such as

android is made much easier due to the availability of IDEs such as Android Studio and

Eclipse. Similarly, programming platforms such as Visual Studio attract many more

young developers due to their easy learn-ability features. While GPU programming

platforms like OpenCL and CUDA do not directly compete with these platforms, they

lose out a large proportion of potential developers, being relatively difficult to learn and

use. Lastly, applications that make use of GPUs like high-definition games or movies,

supercomputers, data centers, aerospace or defence applications require persistent ef-

forts over a significant time period to complete. On the other hand, domains such

as application development for handheld devices and web development motivate many

more developers due to their simple usability features. Results in such applications are

comparatively easier to achieve and market to potential users. They can also be altered

more frequently with little effort. These factors adversely impact the popularity of GPU

programming as choice for research, especially among students.

Chapter Three: Challenges in GPU Computing 13

3.6 Common bugs in GPU kernels

While the issues mentioned above broadly cover the current challenges faced by pro-

grammers in the GPU computing domain, we have narrowed our focus to the prevalence

of bugs in GPU kernel code. In the course of this thesis, we have considered certain pro-

gramming and some performance bugs that can occur in GPU software. These include

data races and incorrectly placed barriers. Let us consider them in greater detail.

3.6.1 Data Race

A data race is a common bug found in GPU kernels. It occurs when two or more threads

try to simultaneously access data from the same memory location. If both the accesses

are reads, the races is harmless but even if one of the threads is writing to the memory,

the outcome of the two memory accesses is undefined. Consequently, the state of the

application and by extension, that of the system is unpredictable.

1 #inc lude<s t d i o . h>

2 #inc lude<cuda . h>

3 g l o b a l

4 void addToNextKernel (i n t ∗a , i n t b , i n t n) {
5 i n t i = threadIdx . x + blockDim . x∗ blockIdx . x ;

6 i f (i < n)

7 a [i +1] = a [i] + b ;

8 }

Listing 3.1: Data Race example

Listing 4 is a common example of a data race [6]. The kernel accepts an integer array

a[], an integer b and integer n, where n is the number of elements in a[]. The kernel

then adds b to each element in a[] and stores it in the next element of a[]. Consider

threads with i = 1 and i = 2. Let us label them τ1 and τ2 respectively. As we know, all

threads in a given block execute the kernel code in parallel. When τ1 runs, it accesses

two data items of array a[], i.e it reads a[1] and writes to a[2]. Similarly, when τ2

runs it reads from a[2] and writes to a[3]. Therefore, both threads access the same

data location a[2] and one of them is writing to it. This condition is referred to as a

data race as both threads compete for the same memory location and the outcome is

unpredictable since one of them is a write. In the example above, all threads τ1 to τn−1

have data races.

Some of these data races may be actual, others could be benign while some occur only

for certain values of configuration parameters.

Chapter Three: Challenges in GPU Computing 14

3.6.2 Barrier Divergence

The next example that we consider is barrier divergence. Barriers are introduced to syn-

chronise threads to prevent bugs such as data races. In CUDA, the syncthreads()

function call is used to synchronise threads. In OpenCL, the function

barrier() is used for the same purpose. However, often these barriers are placed incor-

rectly, thus leaving open the possibility that some thread skips the barrier. One such

example is listed below. The kernel takes an array of integers as input and adds the

even integers and subtracts all the odd ones. It returns the resulting sum in the variable

sum.

1 k e r n e l void addEvenSubtractOdd (g l o b a l i n t ∗numbers , i n t n , g l o b a l i n t

∗sum) {
2

3 i n t r e s =0;

4 i n t i , temp ;

5 i = g e t l o c a l i d (0) ;

6 i f (i<n) {
7 temp = numbers [i] ;

8 i f (temp%2 == 0) {
9 r e s += temp ;

10 b a r r i e r (CLK GLOBAL MEM FENCE) ;

11 } e l s e {
12 r e s −= temp ;

13 b a r r i e r (CLK GLOBAL MEM FENCE) ;

14 }
15 }
16 ∗sum = r e s ;

17 }

Listing 3.2: OpenCL example of Barrier Divergence and Data Race

Another common instance of barrier divergence occurs when barriers are within the scope

of conditional statements. The barrier is well synchronised if the condition evaluates to

the same value for all thread that execute parallel. However, even if one thread evaluates

the conditional to some other value, the output is undefined with the possibility of

unintended side-effects 1. In such a case, if some threads skip the scope of the condition

while others wait at the barrier inside the scope, the threads that have skipped the

barrier will never encounter it. Consequently, the waiting thread will never be released,

thus leaving the system in an unstable and unpredictable state. Thus, it can be noted

that while barriers are used to synchronize threads across different parallel computing

domains, the problem becomes particularly acute for GPU programming due to the

reasons mentioned above.
1Section 12.4, ”Synchronising Divergent Threads in a Group”, CUDA Toolit Documentation [1]

Chapter Three: Challenges in GPU Computing 15

Sr.
No.

Verification
Software

Programming Bugs Performance issues

Data
Race

Barrier
Diver-
gence

BCR WDR MCR

1 GPUVerify 3 3 5 5 5

2 GKLEE 3 3 3 3 3

Table 3.1: Bugs and issues reported by GPUVerify and GKLEE

Among the tools we have chosen for analysis, GPUVerify reports both data races and

barrier divergences. GKLEE, on the other hand, reports not just these bugs, it also does

a runtime analysis of the kernel and locates any bank conflicts, warp divergences and

non-coalesced memory accesses.

Chapter 4

Experiments and Testing

In this chapter, we outline the procedure followed when conducting experiments with

the verification tools. It details the process of selecting benchmarks kernels, the specifi-

cations of the computer system used for testing and the system pre-requisites for both

software. It also includes a sample run of two different test kernels with GPUVerify and

GKLEE.

4.1 Choice of Benchmarks

The tools were to be tested on a wide range of simple kernels that would be easy to inter-

pret. Therefore, the benchmarks were taken from among open source projects available

on GitHub. The applications that have been chosen cover a wide variety of domains

such as image processing, mining tools, mathematical operations, etc. These include ker-

nels used for mathematical computation such as vector addition, matrix multiplication,

estimation of PI and MonteCarlo functions. Some benchmarks were chosen from the

list of examples provided by the developers of GKLEE. This enabled us to understand

the behaviour of GKLEE in greater detail. In all, twenty-six kernels were selected for

testing.

Secondly, the dependencies of the programs and their compatibility with the system

affected the choice of benchmarks. Several applications had to be rejected as they were

incompatible with the system or were dependent on libraries that could not be installed

due to compatibility issues. Moreover, the different approaches adopted by GPUVerify

and GKLEE also played a major role in the selection of kernels for benchmarks. While

GPUVerify can easily test a kernel without any main function or header files, GKLEE

requires a main function that calls the kernel. In order to test the entire application

16

Chapter Four: Experimental Setup 17

using GKLEE, all dependencies such as header files and third-party libraries are required.

Such variations have forced us to search extensively for kernels that are compatible with

both the tools, thus delaying the process to a certain extent. It also reduced considerably

the number of kernels that were tested using both tools.

4.2 Selected Benchmark Kernels

Id Kernel Programming
Platform

Length of
Code

Tested us-
ing

1 Transpose kernel [21] OpenCL 78 GPUVerify

2 Matrix Mul [21] OpenCl 76 GPUVerify

3 MatrixVectorMul [21] OpenCL 57 GPUVerify

4 Loop4 [22] A.1 OpenCL 26 GPUVerify

5 Harlan-nested-kernel [22] OpenCL 20 GPUVerify

6 NBody Computation A.2 [23] CUDA 64 GPUVerify

7 PI Estimation [23] CUDA 74 GPUVerify

8 MatrixMultiply [24] CUDA 101 GPUVerify

9 ImageBlur [25] CUDA 178 GPUVerify

10 Pairwise sums timed [26] CUDA 112 GKLEE &
GPUVerify

11 GPU kmeans [26] CUDA 224 GKLEE &
GPUVerify

12 Vectorsums [26] CUDA 47 GKLEE &
GPUVerify

13 Matmul [26] CUDA 112 GKLEE &
GPUVerify

14 Pairwise sums [26] CUDA 77 GKLEE &
GPUVerify

15 Cube [27] A.6 CUDA 40 GKLEE &
GPUVerify

16 Square [27] CUDA 47 GKLEE &
GPUVerify

17 Deadlock0 [28] CUDA 49 GKLEE

18 Deadlock2 [28] CUDA 66 GKLEE

19 Seive1 [28] CUDA 86 GKLEE

20 Simple Error handling [25] CUDA 187 GKLEE

21 Inter Block Data Race [28] CUDA 15 GKLEE

22 Memory [29] CUDA 66 GKLEE

23 Bank Conflict [28] CUDA 49 GKLEE

24 Loop4a [22] A.3 OpenCL 27 GPUVerify

25 SumMatrix 2D grid 2D block
[30]

CUDA 132 GKLEE

26 SumMatrix 1D grid 2D block
[30]

CUDA 137 GKLEE

Table 4.1: Benchmarks selected for testing

Chapter Four: Experimental Setup 18

Table 4.1 lists the benchmarks selected for testing, the programming platform they

belong to, the length of their code and also the verification tools that were used in

the experiments. These kernels have been chosen after a thorough search of GitHub

repositories and code samples. They represent common usage of GPUs like matrix

operations and parallel sums. Transpose kernel, Matrix Mul, MatrixMultiply,

MatrixVectorMul and Matmul are kernels that deal with operations on matrices.

On the other hand, loop4 and loop4a are nested for loops. Vectorsums, Pairwise

sums and Pairwise sums timed conduct different addition operations on a given set

of integers. PI Estimation estimates the value of π while N-Body computation, as

the name suggests, conducts an n-body computation. Cube and Square calculate cubes

and squares of integers respectively.

The benchmarks Deadlock0, Deadlock2, Seive1, Inter Block Data Race and

Seive1 were chosen from the same GitHub repository as that of GKLEE [28] and are

provided by the developers. These act as illustrative examples of the way GKLEE

reports potential deadlocks due to barrier divergence and bank conflicts.

4.3 Experimental Setup

The benchmarks were then tested for bugs using the chosen verification tools, namely

GPUVerify and GKLEE. The experiments were conducted on a computer in Lab A-200

of BITS Pilani K. K. Birla Goa Campus, India. The system details are listed in table

4.2.

Sr No Property Type / Value

1 CPU Intel ®Core TM i7-3770

2 Clock Speed 3.40 GHz

3 Number of Cores 8

4 Graphics Intel ®IvyBridge Desktop

5 Operating System Ubuntu 14.04 LTS

6 OS Type 64 bit

7 System Memory 8 GB

8 Disk Size 483.8 GB

Table 4.2: System Specifications

Chapter Four: Experimental Setup 19

4.3.1 GPUVerify Prerequisites

The GPUVerify Documentation [31] details the procedure for installing the tool. The

software can be installed in two separate ways - Docker installation and Nightly builds.

Docker is used to package the entire application into a portable and reproducible envi-

ronment. However, the nightly builds allow us to directly install GPUVerify from source

on both Linux as well as Windows platforms. The following are the prerequisites for

installing and running GPUVerify on system 4.2.

Sr
No

Prerequisite Tool Remarks

1 Python [32] Python programming platform version 2.7 or above

2 pip [33] Tool for installing Python software packages

3 psutil [34] Python module for cross-platform process and system
utilities

5 Mono [35] A software platform to create cross platform applications
on the .NET framework

5 gcc [36] GNU Compiler Collection

6 GPUVerify Linux compatible nightly build of GPUVerify

Table 4.3: Prerequisites for GPUVerify on system 4.2

4.3.2 GKLEE prerequisites

The Github page of GKLEE consists of the entire source code along with the installation

and usage instructions. GKLEE can be downloaded from its repository and installed,

subject to the following prerequisites on system 4.2.

Sr
No

Prerequisite Tool Remarks

1 flex[37] Lexical Analyzer that generates scanners

2 bison [38] General purpose parser generator that con-
verts an annotated CFG to a deterministic
LR parser

3 CMake [39] Open-source build tool (Version 3.0 or above)

4 git[40] Open-source version control system for soft-
ware

Table 4.4: Prerequisites of GKLEE on system 4.2

Chapter Four: Experimental Setup 20

4.4 Prover of User GPUs

Prover of User GPUs (PUG) was the third tool chosen for analysis in this project.

However, the latest vesion of the tool has been ported to GKLEE [41] by its developers

i.e. PUG has now been subsumed by GKLEE. Hence, it was decided to restrict the

scope of the project to GPUVerify and GKLEE. The time constraints of the thesis were

also a major factor in this decision.

The tools, GPUVerify and GKLEE, have been installed and test run on the system. The

benchmark kernels listed in table 4.1 have been tested one at a time using these tools.

A sample test run of both software is explained in the following section.

4.5 Analysing kernels using GPUVerify and GKLEE

GPUVerify and GKLEE are different software by nature: GPUVerify is a purely static

verification tool, GKLEE is a concrete and symbolic (concolic) analyser of GPU kernels.

The aim and scope of both the tools are different as well, although there is some overlap.

Consequently, the testing requirements, their input files, test procedure, run-times and

output differ significantly.

4.5.1 GPUVerify

On downloading the GPUVerify nightly build for Linux and extracting it, it is seen that

the directory has only one folder named for the date when the latest version was officially

released. Inside this folder, all the files required to run the tool are present. To test

run the system, we must first write a sample kernel. Some samples are provided in the

package, but we have used a new kernel 3.2.

Figure 4.1 describes the output of GPUVerify. The command

./gpuverify –local size=2 –num groups=1 barrierDivergence.cl

calls the GPUVerify script and passes the OpenCL kernel file as input to it. The variables

local size and num groups refer to the number of work items per group (threads per

block) and number of work groups in the grid (number of blocks) respectively. In this

case, the number of work items per group is 2 and the number of groups is 1. As can be

observed, GPUVerify detects two different types of errors. Firstly, there is a possibility

of divergence in the barriers in line 10 and line 13 of the code and each of these is listed

as a separate error. Secondly, there is a chance of a data race between two work items

(threads) when writing to variable sum in line 16 as both thread access the same data

item.

Chapter Four: Experimental Setup 21

Figure 4.1: Sample run of GPUVerify on kernel 3.2

4.5.2 GKLEE

The GKLEE webage [42] links to the official Github repository of GKLEE [43]. The

README file in the repository includes all the information required to install and run

the software. The command

gklee-nvcc inter block race.cu

compiles the source code using Nvidia’s NVCC compiler and creates an executable in-

ter block race. Then, the command

gklee inter block race

must be run to exectute GKLEE. GKLEE runs the program and checks for various

errors such as different types of data races, potential deadlocks due to differing paths

taken by threads, rate of bank conflicts, rate of memory coalescing and rate of Warp

Chapter Four: Experimental Setup 22

Figure 4.2: Excerpt from a sample run of GKLEE on kernel A.4

Divergence. Figure 4.2 illustrates an excerpt of a sample run of GKLEE on the kernel

A.4.

The selected benchmarks were then tested using GPUVerify and GKLEE. The following

chapter documents the results and their analysis.

Chapter 5

Results and analysis

In this chapter, we detail results of the tests that were conducted. We have documented

the number of errors and their types that were reported during the tests. The runtimes

are also listed. In sub-section 5.3, a comparative analysis of the two software and their

performance has been included.

5.1 Verification using GPUVerify

Testing with GPUVerify was a simple process compared to GKLEE. For each benchmark,

the kernel functions(s) were extracted and stored in a separate file. This file was then

passed as an input to the GPUVerify script along with the configuration parameters.

For CUDA kernels, the parameters are called blockDim, refering to the dimensions of

an individual block and gridDim, which refers to the dimensions of the grid. These

parameters were set to single dimension values blockDim = 16 and gridDim = 16.

GPUVerify takes relatively less time to complete its analysis. The runtimes observed

in the tests vary between hundreds of milliseconds to 40 seconds, but never above one

minute. The output of the program is relatively concise and easier to interpret and

analyse. Moreover, GPUVerify detects two separate types of potential bugs, namely

data races and barrier divergence. We have documented the results in the following

tables.

In tables 5.1 and 5.2, the number of instances of both errors, data races and barrier

divergence, are listed. In each of the cases, except N-Body Computation, GPUVerify

completes its execution in less than ten seconds. Moreover, GPUVerify reports each

1GPUVerify exits with error: unhandled exception

23

Chapter Five: Results and Discussion 24

Id
4.1

Benchmark Data Race
#

Barrier Di-
vergence #

Time

1 Transpose kernel 4 0 1.7s

2 Matrix Mul 2 0 1.8s

3 Matix vector Multiply 0 0 1.6s

4 Harlan Nested Kernels 5 0 2.5s

5 Loop4 1 0 3.4s

24 Loop4a Err 1 Err 17.8s

Table 5.1: Results: OpenCL benchmarks verified using GPUVerify

Id
4.1

Benchmark Data Race Barrier Di-
vergence

Time

6 N-Body Computation 2 2 39.7

7 PI Estimation 3 0 3.9

8 MatrixMultiply2 8 0 6.7

9 Image Blur 0 0 0.7

10 Pairwise sums timed 4 0 1.6

11 GPU kmeans 8 0 4.5

12 Vector Sums 1 0 1.2

13 Matmul 0 0 1.4

14 Pairwise sums 4 0 1.7

15 Cube 1 0 1.1

16 Square 1 0 1.1

17 Deadlock0 3 1 1.4

18 Deadlock2 0 1 1.3

19 Seive1 2 0 1.5

Table 5.2: Results: CUDA benchmarks verified using GPUVerify

possible data race. On the other hand, GKLEE reports only the first instance of a data

race and terminates execution at that point.

An instance of a data race is found in the benchmarks Cube, Square and Vector

Sums. This data race is context based i.e. it only occurs if there are multiple threads

in a block. Else these kernels are free of bugs. Such bugs remain hidden when the

configuration parameters are always set to the required values; in this case that value is

1 for both the number of threads and the number of blocks.

Another important observation can be made from benchmark 24, Loop4a. In this case,

GPUVerify terminates with an unhandled exception. Due to lack of time and constraints

imposed by the scope of our research, this error was not studied in detail.

Chapter Five: Results and Discussion 25

5.2 Verification using GKLEE

Unlike GPUVerify, GKLEE is limited to CUDA applications. Consequently, only bench-

marks written using CUDA which were complete with all the required libraries could

be tested using GKLEE. Moreover, GKLEE is a sophisticated tool compared to GPU-

Verify. Its output is more detailed and takes time to interpret. But the results can be

categorised into the following categories: Data Races, Deadlocks (Barrier Divergence),

Rate of Memory Coalescing, Rate of warp divergence and Rate of bank conflicts. The

following table lists the data from our tests.

Id
4.1

Benchmarks Errors Performance Bugs Time

Data
Race
#

BD #
2

BCR
% 3

WDR
% 4

MCR
% 5

10 Pairwise-sums
timed

1 0 0 2, 45 100 1m 21.9s

11 GPU kmeans 1 0 0 0, 25 96, 75 1m 33.8s

12 Vector Sums 1 0 0 0 100 0m 0.9s

13 Matmul 1 0 0 50 100 0m 3.7s

14 Pairwise sums 1 0 0 50 100 0m 0.5s

15 Cube 1 0 0 0 100 0m 5.2s

16 Square 1 0 0 0 100 0m 3.4s

17 Deadlock0 0 1 NA NA NA 0m 1.4s

18 Deadlock2 0 1 0 50 100 0m 2.8s

19 Seive1 1 0 0 100 100 0m 6.3s

20 Simple-Error
Handling

0 0 0 3, 100 100 4m 7.2s

21 Interblock race 1 0 0 0 100 0m 0.5s

22 Memory 0 0 0 20 100 0m 48.6s

23 Bank Conflict 0 0 100 0 100 0m 1.4s

25 SumMatrix-1D
grid 2D block

Err Err Err Err Err Timeout
6

26 SumMatrix-2D
grid 2D block

0 0 0 100 100 1m15.8s

Table 5.3: Results: Benchmarks verified using GKLEE

GKLEE reports the first occurance of a race condition and then terminates the program.

This can be seen from the two tables listed above. While GPUVerify finds multiple data

races in several benchmarks, GKLEE finds at most one. To verify this, a sample kernel

2Barrier Divergence, reported as a potential deadlock in GKLEE
3Bank Conflict Rate
4Warp Divergence Rate, with two sub-parts - Warp WDR and Barrier Interval (BI) WDR
5Memory Coalescing Rate, has two sub-divisions - Warp MCR and Barrier Interval (BI) MCR
6Timeout set at 80 mins; Benchmark 25 takes 84m17.8 seconds and is forcefully stopped

Chapter Five: Results and Discussion 26

Figure 5.1: GKLEE output for kernel A.5. Only the first data race is reported and
execution terminates.

A.5 was written with two data races. On running GKLEE, the following results were

found. Figure 5.1 illustrates an excerpt of the results.

Moreover GKLEE reports a potential deadlock in the benchmarks deadlock0 A.7 and

deadlock2. The deadlock here is an occurrence of the case mentioned in 3.6.2. As can

be seen, the if condition evaluates to true for all threads with tid less than 50 and

false for threads 51 to 63. Consequently, the threads diverge into two different paths of

execution, thus causing a deadlock.

Let us now consider benchmarks 25 and 26, both of which have the same kernel and

compute the sum of two square matrices. The only difference is that benchmark 25

uses a 1 dimensional grid while benchmark 26 uses a 2 dimensional one when it calls

the kernel. A major observation here is that GKLEE times out for benchmark 25. The

reason being the size of the input matrix which is set to 16384, a significantly large

value. The number of threads generated in this benchmark is directly proportional to

the dimensions of the input matrix. Consequently, the kernel runs on a large number of

threads, leading to a timeout (timeout value was fixed at 80 mins in these experiments).

One can also observe that GKLEE executes normally for benchmark 26. The kernel is

the same but it is called with different values for the configuration parameters. The size

of the input matrix is set to 16 in this case. This relation between number of threads

and time of execution is explored further in Graph 5.3 in section 5.3.

Chapter Five: Results and Discussion 27

5.3 Comparative analysis of GPUVerify and GKLEE

In this section we compare the two tools on three parameters: Bugs reported by the tools,

runtimes for benchmarks tested using both tools (common benchmarks) and variation

in runtime on changing configuration parameters.

5.3.1 Difference in bugs reported

The two bugs that both GPUVerify and GKLEE report are data races and barrier

divergence. However, due to the different methodology they follow, the tools provide

differing results when tested on the same benchmarks. During the tests, data races

were detected in nine of the ten common benchmarks. The following table 5.4 makes

a comparative analysis of GPUVerify and GKLEE for the ten benchmarks that were

tested using both the tools.

Id
4.1

Benchmark Number of Data
Races detected

Remarks

GPU
Verify

GKLEE

10 Pairwise
sums timed

4 1 GKLEE exits after first data race is
detected

11 GPU
Kmeans

8 1 GKLEE exits after first data race is
detected

12 Vector
sums

1 1 Data races occurs only if kernel is
called with multiple threads

13 Matmul 0 1 GKLEE reports a benign data race

14 Pairwise
sums

4 1 GKLEE exits after first data race is
detected

15 Cube 1 1 Data race occurs only if kernel is
called with multiple threads

16 Square 1 1 Data race occurs only if kernel is
called with multiple threads

17 Deadlock0 3 0 GKLEE exits after reporting a po-
tential deadlock (barrier divergence)

18 Deadlock2 0 0 Neither tool reports any data races

19 Seive1 2 1 GKLEE exits after first data race is
detected

Table 5.4: Comparative analysis of data races reported by GPUVerify and GKLEE

Among the kernels that were tested, both tools report the same results for barrier

divergence. GKLEE reports it as a potential deadlock whereas GPUVerify states that

the barrier may be reached by non-uniform control flow.

Chapter Five: Results and Discussion 28

5.3.2 Analysis of execution time

The two chosen software, GPUVerify and GKLEE, were compared for three factors:

1. Runtimes for the benchmarks that were tested using both tools (common bench-

marks)

2. Variation in runtime with respect to length of code for common benchmarks

3. Variation in runtime for a single benchmark (Pairwise sums) when number of

threads per block are increased while keeping the number of blocks constant

Graph 5.1 compares the runtimes of GPUVerify and GKLEE for eight of the ten com-

mon benchmarks. As can be seen, GKLEE takes more time to complete its analysis

than GPUVerify for five of the eight benchmarks. The remaining two benchmarks, pair-

wise sums timed and GPU kmeans were not included as the runtimes of GKLEE were

too large to be represented in the same graph. For these benchmarks, the difference in

runtime was even greater, as can be observed from 5.2 and 5.3.

12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

Benchmarks (Id.)

R
u

n
ti

m
e

(S
ec

on
d

s)

Graph 5.1: Comparison of runtimes for common benchmarks

GPUVerify GKLEE

Chapter Five: Results and Discussion 29

Graph 5.2 depicts the variation in runtime with respect to the length of the code. It

must be noted that for such a small sample of relatively small CUDA kernels, we cannot

make generalised conclusions from the trends we observe in this graph. However, what

can be said is that the runtime of GKLEE varies significantly with respect to the length

of the program. Contrastingly, the runtime of GPUVerify remains almost constant for

the chosen benchmarks.

Graph 5.3 plots the variation in runtime of both tools when the configuration parameters,

namely the number of blocks and number of threads per block are changed. The graph

has a logarithmic scale with the x-axis showing the log2[Numberofthreadsperblock]

and y-axis showing log10[Runtime(seconds)]. In this experiment we hold the number

of blocks in the grid to an constant value of two while varying the number of threads

from 1 to 128 in the increasing powers of 2 i.e. the number of threads are 1, 2, 4, 8, 16,

32, 64 and 128 in the seven cases respectively. The experiment was conducted only on

one benchmark, Pairwise sums.

30 45 60 75 90 105 120
0

1

2

3

4

5

6

7

Length of program [No. of lines]

R
u

n
ti

m
e

[s
ec

on
d

s]

Graph 5.2: Variation in runtime with length of code

GKLEE
GPUVerify

Chapter Five: Results and Discussion 30

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

1.5

2

log2 [Number of threads per block]

lo
g
1
0

[R
u

n
ti

m
e

(s
ec

on
d

s)
]

Graph 5.3: Runtime of GKLEE and GPUVerify for Pairwise Sums

GKLEE
GPUVerify

Chapter 6

Conclusion

The project has progressed according to the time line set at the beginning of the thesis,

barring minor delays caused by delay in acquiring resources, installation of the verifica-

tion tools, namely GPUVerify and GKLEE and resolving compatibility issues between

kernels and the two verification tools. Over the course of this project, we have found

errors that occur commonly in GPU kernels. We have selected twenty-six open-source

benchmarks to represent both the OpenCL and CUDA paltforms. These have been

tested using GPUVerify and GKLEE, the results were documented and analysed. The

third verification tool, PUG, was not installed as it has been subsumed by GKLEE. This

chapter outlines the conclusions that can be drawn from the work we have done during

the course of this thesis.

Scope of the software The two software differ greatly in their scope. GPUVerify

detects only two programming bugs, data races and barrier divergence while GKLEE

also reports performance issues like bank conflicts, warp divergence and non-coalesced

memory accesses. GPUVerify reports all potential data races and barrier divergence

cases in a single barrier interval given kernel while GKLEE exits after reporting the first

non-benign instance of any of these two bugs. Moreover, GPUVerify covers both the

OpenCL and CUDA platforms while GKLEE only analyses CUDA programs written in

C/C++. However, GKLEE subsumes GPUVerify in terms of the issues it detects and

the volume of information it provides in the results. GKLEE can also be used to test the

entire application when all required libraries and dependencies have been satisfied, thus

allowing developers to evaluate real world performance. On the other hand, GPUVerify

only conducts a static analysis of kernels in isolation and cannot comment on their

performance when they are run in parallel.

31

Chapter Six: Conclusion 32

Portability aspects GPUVerify is more portable across different platforms owing to

its nightly build and docker versions which have few system requirements and require

libraries and tools that can be installed relatively easily. In contrast, GKLEE is less

portable, given that it needs tools that often take longer to install and can require

a specific version of a given operating system. The installation procedure also leaves

greater chance for error due to system inconsistencies or mistakes made by the user.

The installation steps for both software are adequately documented on their respective

web-pages and Github repositories.

Learnability and Usability issues GPUVerify is relatively much easier to run and

the documentation and supporting literature on GPUVerify is adequate to resolve most

issues faced during testing. This enables the user to use the tool efficiently and effec-

tively. Comparatively, the GKLEE Github repository provides less documentation of

the various modes in which GKLEE can be used. Moreover, the output of GPUVerify is

simple and easy to interpret. However, in the case of GKLEE, the results generated are

relatively complicated and detailed as it addresses many more aspects of the application

than GPUVerify. This makes GPUVerify more usable and learn-able as a tool compared

to GKLEE.

Error-free termination and execution time Both tools terminate for almost all

the benchmarks, with a few notable exceptions. GPUVerify returns an error for bench-

mark Loop4a A.3. GKLEE exceeds the set time limit for benchmark 25, sumMa-

trix1Dgrid2Dblock. The reason for the excessive time taken are the large dimensions of

the grid in that benchmark. In general, the execution time of GKLEE increases linearly

with the values of the configuration parameters. This trend can be observed from Graph

5.3. Also, GKLEE takes longer to execute than GPUVerify for seven of the ten common

benchmarks, as can bee seen from graph 5.1 and tables 5.2, 5.2 and 5.3. Moreover, its

runtime depends significantly on the length of the code, although no direct relationship

can be asserted between the two. GPUVerify, however, takes almost the same time for

testing kernels that vary in length. This can be observed from graph 5.2.

Recommendations for usage Based on our analysis, GPUVerify is best suited to

be used during the initial and intermediate phases of developing an application as it can

analyse individual kernels without the need for a third-party libraries. While same can

be done with GKLEE by writing a simple main function to call the kernel, GKLEE will

report only the first instance of a bug. Also, the performance determined by GKLEE

for an individual run of a kernel function can differ significantly with the performance of

the same kernel when it is run along with the entire application. Consequently, GKLEE

Chapter Six: Conclusion 33

can be used to test the application as a whole and gauge its real performance in the last

phase of software development.

Finally, we can conclude that both GPUVerify and GKLEE provide much needed and

useful mechanisms to detect programming bugs such as data races and barrier diver-

gence. GKLEE also reports potential performance issues in the program by conducting

a concolic analysis. There is potential for improvements with regards to usability and

learn-ability aspects of both tools, especially for GKLEE.

6.1 Future work

This research project had a timeline of sixteen weeks. Th researcher had little or no

prior knowledge of GPUs and GPU software. Consequently, the scope of this thesis was

restricted to only the aspects mentioned in this report. This leaves open the opportunity

to study these tools in greater detail.

One specific aspect is to carefully analyse the nature of computations in a specific bench-

mark and to group similar benchmarks together during the testing phase. Possible cate-

gories can include kernels that use floating point calculations and those that have nested

loops. Another classification can be made based on libraries that an application is using

to assess the effect of specific third party APIs on performance. Such a qualitative classi-

fication of benchmarks would enable researchers to study the performance of GPUVerify

and GKLEE in greater depth.

Another important aspect that needs attention is the possibility of false positives and

false negatives being reported by both tools. A false positive occurs when either of these

tools reports a bug that does not exists in reality. In contrast, a false negative happens

when the tool reports an actual case of a data race as benign or does not report it at all.

Such issues can greatly reduce the reliability of a verification tool and therefore must be

analysed in greater detail.

Lastly, we hope to present the results of this thesis to the developers of GPUVerify and

GKLEE and seek their review of our analysis. Based on their feedback, we can further

improve the qualitative aspects of our research, thus enabling a greater understanding

of these verification software.

Appendix A

Kernel Source code

A.1 Loop4.cl

1 k e r n e l void foo (g l o b a l i n t ∗p , g l o b a l i n t ∗q) {
2 i n t i = g e t g l o b a l i d (0) ;

3

4 i n t s i z e = g e t g l o b a l s i z e (0) ;

5

6 i n t f = 0 ;

7 f o r (i n t j = 0 ; j < s i z e ; j++) {
8 i n t N = p [i] ;

9 f o r (i n t k = 0 ; k < N; ++k) {
10 i n t M = q [i % j] ;

11 f o r (i n t l = 0 ; l < M; ++l) {
12 f o r (i n t m = 0 ; m < p [q [i]] ; ++m) {
13 f += p [k] ∗ p [j] / q [l] ∗ s q r t ((f l o a t)m) ;

14 }
15 }
16 }
17 }
18

19 p [i] = f ;

20 }

Listing A.1: Kernel - Loop4.cl

34

Appendix 35

A.2 N Body Computation.cu

1 #inc lude <malloc . h>

2 #inc lude <math . h>

3 #inc lude <time . h>

4 #inc lude <s t d i o . h>

5 s t r u c t Vector

6 {
7 f l o a t x ;

8 f l o a t y ;

9 f l o a t z ;

10 d e v i c e f l o a t d in f luenceBy (Vector p)

11 {
12 re turn 1 ; /// s q r t ((x−p . x) ∗(x−p . x)+(y−p . y) ∗(y−p . y)+(z−p . z) ∗(z−p . z)) ;

13 }
14 h o s t f l o a t h in f luenceBy (Vector p)

15 {
16 re turn 1 ; /// s q r t ((x−p . x) ∗(x−p . x)+(y−p . y) ∗(y−p . y)+(z−p . z) ∗(z−p . z)) ;

17 }
18 } ;

19

20 h o s t i n t c i e l (f l o a t va lue)

21 {
22 f l o a t mantissa = value − (i n t) va lue ;

23 re turn ((i n t) va lue + (mantissa==0 ? 0 : 1)) ;

24 }
25

26 g l o b a l void forceComp (Vector ∗ p o s i t i o n s , i n t bodyCount , f l o a t ∗

r e su l tantForce , i n t bodiesPerThread)

27 {
28 extern s h a r e d f l o a t perBlockCache [] ;

29 i n t t i d = threadIdx . x∗bodiesPerThread ;

30 i n t Limit = t i d + bodiesPerThread ;

31

32 i f (t i d < bodyCount)

33 {
34 perBlockCache [threadIdx . x] = 0 . 0 ;

35 whi le (t i d < Limit)

36 {
37 i f (b lockIdx . x != t i d)

38 perBlockCache [threadIdx . x] += p o s i t i o n s [b lockIdx . x] . d in f luenceBy (

p o s i t i o n s [t i d]) ;

39 t i d++;

40 }
41 sync th r ead s () ;

42

43 /∗ now do reduct ion by add i t i on f o r the r e s u l t a n t

44 ∗ f o r c e on body with Id = blockIdx . x ∗/

Appendix 36

45 i n t reduceDim = blockDim . x /2 ;

46 whi le (reduceDim>0)

47 {
48 i f (threadIdx . x < reduceDim)

49 perBlockCache [threadIdx . x] += perBlockCache [threadIdx . x+reduceDim] ;

50 sync th r ead s () ;

51 reduceDim /= 2 ;

52 }
53 i f (threadIdx . x == 0)

54 r e su l t an tFo r c e [b lockIdx . x] = perBlockCache [0] ;

55 }
56 }

Listing A.2: Kernel - N Body Computation.cu

A.3 Loop4a

1 k e r n e l void foo (g l o b a l i n t ∗p , g l o b a l i n t ∗q) {
2 i n t i = g e t g l o b a l i d (0) ;

3

4 i n t s i z e = g e t g l o b a l s i z e (0) ;

5

6 i n t f = 0 ;

7 f o r (i n t j = 0 ; j < s i z e ; j++) {
8 i n t N = p [i] ;

9 i f (N >= s i z e) re turn ;

10 f o r (i n t k = 0 ; k < N; ++k) {
11 i n t M = q [i % j] ;

12 i f (M >= s i z e) re turn ;

13 f o r (i n t l = 0 ; l < M; ++l) {
14 i f (p [q [i]] >= s i z e) re turn ;

15 /∗ f o r (i n t m =0; m<10;m++){
16 f =2;

17 }∗/

18 f o r (i n t m = 0 ; m < p [q [i]] ; ++m) {
19 f += p [k] ∗ p [j] / q [l] ∗ 1 ; // s q r t ((f l o a t)m) ;

20 i f (f >= s i z e ∗ s i z e) re turn ;

21 }
22 }
23 }
24 }
25

26 p [i] = f ;

27 }

Listing A.3: Kernel - Loop4a.cl GPUVerify terminates with error for this benchmark

Appendix 37

A.4 Inter Block Race.cu

1 #d e f i n e N 128

2 #d e f i n e B 2

3

4 g l o b a l void k (i n t ∗ in)

5 {
6 in [threadIdx . x] = blockIdx . x ;

7 }
8

9 i n t main ()

10 {
11 i n t ∗ in = (i n t ∗) mal loc (N ∗ s i z e o f (i n t)) ;

12 i n t ∗ din ;

13 cudaMalloc ((void ∗∗) &din , N∗ s i z e o f (i n t)) ;

14 k<<<B,N/B>>>(din) ;

15 }

Listing A.4: Kernel - Inter block data.cu race

A.5 Data Race example in CUDA

1 #d e f i n e N 16

2 g l o b a l void add (i n t ∗ a , i n t ∗ b) {
3 i n t i = threadIdx . x + blockIdx . x ∗ blockDim . x ;

4 i f (i<N−1){
5 b [i] += b [i +1] ;

6 a [i] += a [i +1] ;

7 }
8 }
9

10 i n t main () {
11 i n t ∗ a = (i n t ∗) mal loc (N ∗ s i z e o f (i n t)) ;

12 i n t ∗ d a ;

13 cudaMalloc ((void ∗∗) &d a , N∗ s i z e o f (i n t)) ;

14 i n t ∗ b = (i n t ∗) mal loc (N ∗ s i z e o f (i n t)) ;

15 i n t ∗ d b ;

16 cudaMalloc ((void ∗∗) &d b , N∗ s i z e o f (i n t)) ;

17 add<<<4, 4>>>(d a , d b) ;

18 }

Listing A.5: Kernel - CUDA example with two data races

Appendix 38

A.6 Cube.cu

1 #inc lude <s t d i o . h>

2 g l o b a l void cube (f l o a t ∗ d out , f l o a t ∗ d in) {
3 i n t idx = threadIdx . x ;

4 f l o a t f = d in [idx] ;

5 d out [idx] = f ∗ f ∗ f ;

6 }
7 i n t main (i n t argc , char ∗∗ argv) {
8 const i n t ARRAY SIZE = 96 ;

9 const i n t ARRAY BYTES = ARRAY SIZE ∗ s i z e o f (f l o a t) ;

10

11 // generate the input array on the host

12 f l o a t h in [ARRAY SIZE] ;

13 f o r (i n t i = 0 ; i < ARRAY SIZE; i++) {
14 h in [i] = f l o a t (i) ;

15 }
16 f l o a t h out [ARRAY SIZE] ;

17

18 // d e c l a r e GPU memory p o i n t e r s

19 f l o a t ∗ d in ;

20 f l o a t ∗ d out ;

21 // a l l o c a t e GPU memory

22 cudaMalloc ((void ∗∗) &d in , ARRAY BYTES) ;

23 cudaMalloc ((void ∗∗) &d out , ARRAY BYTES) ;

24 // t r a n s f e r the array to the GPU

25 cudaMemcpy(d in , h in , ARRAY BYTES, cudaMemcpyHostToDevice) ;

26

27 // launch the ke rne l

28 cube<<<1, ARRAY SIZE>>>(d out , d in) ;

29

30 // copy back the r e s u l t array to the CPU

31 cudaMemcpy(h out , d out , ARRAY BYTES, cudaMemcpyDeviceToHost) ;

32 // p r in t out the r e s u l t i n g array

33 f o r (i n t i = 0 ; i < ARRAY SIZE; i++) {
34 p r i n t f (”%f ” , h out [i]) ;

35 p r i n t f (((i % 4) != 3) ? ”\ t ” : ”\n”) ;

36 }
37 cudaFree (d in) ;

38 cudaFree (d out) ;

39 re turn 0 ;

40 }

Listing A.6: Kernel - Cube.cu

Appendix 39

A.7 Deadlock0.cu

1 #inc lude <c s td io>

2 #d e f i n e N 50

3 #d e f i n e B 2

4 #d e f i n e T 32

5

6 g l o b a l void d l (i n t ∗ in)

7 {
8 i n t t i d = threadIdx . x + blockIdx . x ∗ blockDim . x ;

9 i f (t i d < N)

10 {
11 i f (in [t i d] % 2 == 0)

12 in [t i d]++;

13

14 sync th r ead s () ; // ouch

15

16 i n t sum = in [t i d] ;

17 i f (t i d > 0) {
18 sum += in [t id −1] ;

19

20 } i f (t i d < N − 1)

21 sum += in [t i d +1] ;

22 in [t i d] = sum / 3 ;

23 }
24 }
25

26 i n t main ()

27 {
28 i n t ∗ in = (i n t ∗) mal loc (N∗ s i z e o f (i n t)) ;

29 f o r (i n t i = 0 ; i < N; i++)

30 in [i] = i ;

31

32 i n t ∗ din ;

33 cudaMalloc ((void ∗∗)&din , N∗ s i z e o f (i n t)) ;

34 cudaMemcpy(din , in , N∗ s i z e o f (i n t) , cudaMemcpyHostToDevice) ;

35

36 dl<<<B,T>>>(din) ;

37

38 cudaMemcpy(in , din , N∗ s i z e o f (i n t) , cudaMemcpyDeviceToHost) ;

39

40 f o r (i n t i = 0 ; i < N; i++)

41 p r i n t f (”%d ” , in [i]) ;

42 p r i n t f (”\n”) ;

43 f r e e (in) ; cudaFree (din) ;

44 }

Listing A.7: Kernel - Deadlock0.cu

Bibliography

[1] CUDA v7.5 Toolkit Documentation. URL http://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html#axzz46u9vzDb1.

[2] Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and Paul Thomson.

Gpuverify: a verifier for gpu kernels. In ACM SIGPLAN Notices, volume 47, pages

113–132. ACM, 2012.

[3] Guodong Li, Peng Li, Geof Sawaya, Ganesh Gopalakrishnan, Indradeep Ghosh, and

Sreeranga P Rajan. Gklee: Concolic verification and test generation for gpus. In

ACM SIGPLAN Notices, volume 47, pages 215–224. ACM, 2012.

[4] Ethel Bardsley and Alastair F. Donaldson. NASA Formal Methods: 6th Inter-

national Symposium, NFM 2014, Houston, TX, USA, April 29 – May 1, 2014.

Proceedings, chapter Warps and Atomics: Beyond Barrier Synchronization in the

Verification of GPU Kernels, pages 230–245. Springer International Publishing,

Cham, 2014. ISBN 978-3-319-06200-6. doi: 10.1007/978-3-319-06200-6 18. URL

http://dx.doi.org/10.1007/978-3-319-06200-6_18.

[5] Wei-Fan Chiang, Ganesh Gopalakrishnan, Guodong Li, and Zvonimir Rakamarić.

NASA Formal Methods: 5th International Symposium, NFM 2013, Moffett Field,

CA, USA, May 14-16, 2013. Proceedings, chapter Formal Analysis of GPU Pro-

grams with Atomics via Conflict-Directed Delay-Bounding, pages 213–228. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-38088-4. doi: 10.1007/

978-3-642-38088-4 15. URL http://dx.doi.org/10.1007/978-3-642-38088-4_

15.

[6] Guodong Li and Ganesh Gopalakrishnan. Scalable smt-based verification of gpu

kernel functions. In Proceedings of the eighteenth ACM SIGSOFT international

symposium on Foundations of software engineering, pages 187–196. ACM, 2010.

[7] David B Kirk and W Hwu Wen-mei. Programming massively parallel processors: a

hands-on approach. Newnes, 2012.

40

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#axzz46u9vzDb1
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#axzz46u9vzDb1
http://dx.doi.org/10.1007/978-3-319-06200-6_18
http://dx.doi.org/10.1007/978-3-642-38088-4_15
http://dx.doi.org/10.1007/978-3-642-38088-4_15

References 41

[8] Khronos OpenCL Working Group et al. The opencl specification. version, 1(29):8,

2008.

[9] CUDA Nvidia. Compute unified device architecture programming guide. 2007.

[10] Kate Gregory and Ade Miller. C++ amp: accelerated massive parallelism with

microsoft visual c++. 2014.

[11] CUDA Nvidia. Programming guide, 2008.

[12] Heterogeneous programming with gpus. URL http://apos-project.eu/

Tools-Technologies/heterogeneous-programming-with-gpus.html.

[13] Tom Goddard. Gpu computing. URL https://www.cgl.ucsf.edu/chimera/

data/group-meeting-dec2008/gpu.html.

[14] John Owens et al. Gpu computing. URL http://cs.utsa.edu/~qitian/seminar/

Spring11/03_04_11/GPU.pdf.

[15] Wen-Mei Hwu. Three Challenges in Parallel Programming. 2012. URL http:

//parallel.illinois.edu/blog/three-challenges-parallel-programming.

[16] Igor Ostrovsky. How gpu computing cam to be used for gen-

eral purpose, igor ovstrosky blog. URL http://igoro.com/archive/

how-gpu-came-to-be-used-for-general-computation/.

[17] Randall Head. What’s the big deal with gpgpus? URL http://www.vizworld.

com/2009/05/whats-the-big-deal-with-cuda-and-gpgpu-anyway/#sthash.

bGL6wt6A.dpbs.

[18] Brian O’Sullivan. A quick programmer’s look at nvidia’s cuda.

2007. URL http://www.serpentine.com/blog/2007/02/22/

a-quick-programmers-look-at-nvidias-cuda/.

[19] What is so hard about non-graphic programming on a gpu? URL http:

//arstechnica.com/uncategorized/2007/02/8931/.

[20] Lawrence Latif. AMD thinks most programmers will not use CUDA or OpenCL,

The Inquirer, 2013. URL http://www.theinquirer.net/inquirer/news/

2257035/amd-thinks-most-programmers-will-not-use-cuda-or-opencl.

[21] Forked repository from original github repositories of Leiming Yu. URL https:

//github.com/Anmol-007/oclKernels.

[22] Github repository of eric holk. URL https://github.com/eholk/opencl-stress.

http://apos-project.eu/Tools-Technologies/heterogeneous-programming-with-gpus.html
http://apos-project.eu/Tools-Technologies/heterogeneous-programming-with-gpus.html
https://www.cgl.ucsf.edu/chimera/data/group-meeting-dec2008/gpu.html
https://www.cgl.ucsf.edu/chimera/data/group-meeting-dec2008/gpu.html
http://cs.utsa.edu/~qitian/seminar/Spring11/03_04_11/GPU.pdf
http://cs.utsa.edu/~qitian/seminar/Spring11/03_04_11/GPU.pdf
http://parallel.illinois.edu/blog/three-challenges-parallel-programming
http://parallel.illinois.edu/blog/three-challenges-parallel-programming
http://igoro.com/archive/how-gpu-came-to-be-used-for-general-computation/
http://igoro.com/archive/how-gpu-came-to-be-used-for-general-computation/
http://www.vizworld.com/2009/05/whats-the-big-deal-with-cuda-and-gpgpu-anyway/#sthash.bGL6wt6A.dpbs
http://www.vizworld.com/2009/05/whats-the-big-deal-with-cuda-and-gpgpu-anyway/#sthash.bGL6wt6A.dpbs
http://www.vizworld.com/2009/05/whats-the-big-deal-with-cuda-and-gpgpu-anyway/#sthash.bGL6wt6A.dpbs
http://www.serpentine.com/blog/2007/02/22/a-quick-programmers-look-at-nvidias-cuda/
http://www.serpentine.com/blog/2007/02/22/a-quick-programmers-look-at-nvidias-cuda/
http://arstechnica.com/uncategorized/2007/02/8931/
http://arstechnica.com/uncategorized/2007/02/8931/
http://www.theinquirer.net/inquirer/news/2257035/amd-thinks-most-programmers-will-not-use-cuda-or-opencl
http://www.theinquirer.net/inquirer/news/2257035/amd-thinks-most-programmers-will-not-use-cuda-or-opencl
https://github.com/Anmol-007/oclKernels
https://github.com/Anmol-007/oclKernels
https://github.com/eholk/opencl-stress

References 42

[23] Github repository of pradeep garigipati. URL https://github.com/9prady9/

CUDA.

[24] GitHub repository of Chen Rudan. URL https://github.com/chenrudan/cuda_

examples.

[25] Github repository of francesco caruso. URL https://github.com/fcaruso/

CudaImageBlur.

[26] Github repository of will landau (materials for the iowa state university statistics

department fall 2012 lecture series on general purpose gpu computing). URL https:

//github.com/wlandau/gpu.

[27] Github repository of chiranth siddappa. URL https://github.com/

chiranthsiddappa/GPU.

[28] Official test cases provided by GKLEE developers, . URL https://github.com/

Geof23/GkleeTests.

[29] Github repository of Tomasz Gasior. URL https://github.com/Tom-Demijohn/

CUDA_programs.

[30] Github repository of Carl. URL https://github.com/daxiongshu/cuda_

textbook_examples.

[31] Installation Procedure, GPUVerify documentation page, Multicore programming

Group, Imperial College London. URL http://multicore.doc.ic.ac.uk/tools/

GPUVerify/docs/installation.html.

[32] Official page of the Python programming platform. URL https://www.python.

org/.

[33] Official page of pip Python package installer. URL https://pip.pypa.io/en/

stable/.

[34] GitHub page of psutil Python library. URL https://github.com/giampaolo/

psutil.

[35] Official page of Mono project. URL http://www.mono-project.com/.

[36] Official page of GNU Compiler Collection (GCC). URL https://gcc.gnu.org/.

[37] Vern Paxson et al. Flex–fast lexical analyzer generator. Lawrence Berkeley Labo-

ratory, 1995.

[38] Charles Donnelly and Richard Stallman. Bison: The YACC-compatible parser gen-

erator. Free Software Foundation Cambridge (MA) 02139, 1992.

https://github.com/9prady9/CUDA
https://github.com/9prady9/CUDA
https://github.com/chenrudan/cuda_examples
https://github.com/chenrudan/cuda_examples
https://github.com/fcaruso/CudaImageBlur
https://github.com/fcaruso/CudaImageBlur
https://github.com/wlandau/gpu
https://github.com/wlandau/gpu
https://github.com/chiranthsiddappa/GPU
https://github.com/chiranthsiddappa/GPU
https://github.com/Geof23/GkleeTests
https://github.com/Geof23/GkleeTests
https://github.com/Tom-Demijohn/CUDA_programs
https://github.com/Tom-Demijohn/CUDA_programs
https://github.com/daxiongshu/cuda_textbook_examples
https://github.com/daxiongshu/cuda_textbook_examples
http://multicore.doc.ic.ac.uk/tools/GPUVerify/docs/installation.html
http://multicore.doc.ic.ac.uk/tools/GPUVerify/docs/installation.html
https://www.python.org/
https://www.python.org/
https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/stable/
https://github.com/giampaolo/psutil
https://github.com/giampaolo/psutil
http://www.mono-project.com/
https://gcc.gnu.org/

References 43

[39] Ken Martin and Bill Hoffman. Mastering CMake. Kitware, 2015.

[40] Scott Chacon and Ben Straub. Pro git. Apress, 2014.

[41] Official page of Prover of User GPUs. URL http://formalverification.cs.

utah.edu/PUG/.

[42] Homepage of the developers of GKLEE, the Gauss Research Group, Department of

Computer Science, university of Utah, . URL http://formalverification.cs.

utah.edu/GKLEE/.

[43] Official GitHub repository of GKLEE , . URL https://github.com/Geof23/

Gklee.

http://formalverification.cs.utah.edu/PUG/
http://formalverification.cs.utah.edu/PUG/
http://formalverification.cs.utah.edu/GKLEE/
http://formalverification.cs.utah.edu/GKLEE/
https://github.com/Geof23/Gklee
https://github.com/Geof23/Gklee

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Scope and Objectives
	1.2 Related works

	2 Background
	2.1 Emergence of Graphics Processing Unit
	2.2 GPU Programming Platforms
	2.3 Verification of GPU software

	3 Challenges in GPU Computing
	3.1 Differences in the programming model
	3.2 Differences in GPU and CPU architecture
	3.3 Optimizing performance
	3.4 Degree of manual intervention
	3.5 Other aspects
	3.6 Common bugs in GPU kernels
	3.6.1 Data Race
	3.6.2 Barrier Divergence

	4 Experiments and Testing
	4.1 Choice of Benchmarks
	4.2 Selected Benchmark Kernels
	4.3 Experimental Setup
	4.3.1 GPUVerify Prerequisites
	4.3.2 GKLEE prerequisites

	4.4 Prover of User GPUs
	4.5 Analysing kernels using GPUVerify and GKLEE
	4.5.1 GPUVerify
	4.5.2 GKLEE

	5 Results and analysis
	5.1 Verification using GPUVerify
	5.2 Verification using GKLEE
	5.3 Comparative analysis of GPUVerify and GKLEE
	5.3.1 Difference in bugs reported
	5.3.2 Analysis of execution time

	6 Conclusion
	6.1 Future work

	A Kernel Source code
	A.1 Loop4.cl
	A.2 N_Body_Computation.cu
	A.3 Loop4a
	A.4 Inter_Block_Race.cu
	A.5 Data Race example in CUDA
	A.6 Cube.cu
	A.7 Deadlock0.cu

	Bibliography

